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Abstract

In an electronic commerce environment, the merchant and the customer are unlikely to trust each other. This problem has

motivated researchers to propose fair-exchange protocols based on using an on-line trusted third party; the third party receives

the items being exchanged from the customer and the merchant and then forwards it to the other party in a fair manner.

However, the third party is a source of bottleneck for these protocols. Not only is the performance of the third party an issue, but

also its vulnerability to denial of service attacks. In this paper, we propose an optimistic protocol in which the trusted third party

is invoked only if any party misbehaves or prematurely aborts. The protocol achieves fairness and dispute resolution is

performed automatically within the scope of the protocol. We show how we can distribute the function of the trusted third party

across several third parties; this increases the robustness of the protocol. Additionally, we show how by adopting a payment

mechanism based on electronic cash, we provide anonymity to the customer’s transactions.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

E-commerce transactions, specially those that in-

volve the exchange of digital products between the

transacting parties, have stronger requirements as

compared to classical brick-and-mortar transactions.

In the classical business environment, a transaction

involves fulfillment of a contract between two parties;

the contract describes the penalties if either party fails

to meet its obligation. Since each transacting party has
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an identifiable place of doing business, any party that

behaves unfairly in the transaction can be physically

approached and held accountable for its unfair behav-

ior. On the other hand, in an e-commerce environment

that deals with only digital products, a party does not

always have a physically identifiable place of doing

business. After behaving unfairly in the e-commerce

transaction, a party can simply vanish without trace.

In such a case, it may be next to impossible to enforce

the penalties of the contract. Consequently, in an e-

commerce environment, the two parties are reluctant

to trust each other.

Owing to this lack of trust, e-commerce protocols

need to be carefully designed to prevent unfair busi-
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ness dealings by any party involved. However, it is

not a simple proposition. Consider the following

transaction. A customer, C, contacts an on-line mer-

chant, M, for a product, m. The product is an elec-

tronic database. Now the customer is not willing to

pay for the product without being sure it is the right

database sent by the merchant. A merchant is not

willing to give the database unless he is sure that he

will receive proper payment for it. If the merchant

delivers the product prior to receiving the payment,

the fraudulent customer may simply disappear after

getting the product, causing loss for the merchant. If,

on the other hand, the customer pays before receiving

the product, the merchant may not deliver or may

deliver some wrong product. Thus, unless one of the

parties takes the risk and exchanges its product first,

the protocol will never continue to completion.

Researchers have proposed secure protocols that

address this problem in various degrees. These proto-

cols ensure that no player in an e-commerce transac-

tion can gain an advantage over the other player by

misbehaving, misrepresenting or by prematurely

aborting the protocol—that is, the protocols ensure

fair exchange. Fair-exchange protocols have been

variously studied in the context of exchange of

electronic mails, exchange of digital signatures, ex-

change of documents (where the consistency of the

documents need to be verified before the exchange)

and in the context of electronic payment for services.

In electronic payment systems, fair exchange is often

referred to as ‘‘goods atomicity’’—a merchant

receives payment if and only if the customer receives

the product [9].

Most fair-exchange protocols rely on gathering

evidence during the protocol execution, that can be

used later for dispute resolution in a court of law. The

dispute resolution phase is not a part of the protocol.

After the protocol is completed, a human judge looks

at the evidence and delivers his judgment. Researchers

call such protocols ‘‘weak fair-exchange’’ protocols

[1]. These protocols try to emulate conventional

business transactions. However, in an e-commerce

environment, where any of the players can disappear

quickly, without any trace, such after-the-fact protec-

tion may be inadequate.

To solve this problem, researchers have proposed

‘‘strong fair-exchange’’ protocols [1] that rely on on-

line trusted third parties to ensure that that either both
parties receive each other’s item or none do. The

trusted third party receives the information from each

party and then forwards it to the other party. As a

result, if any party misbehaves or prematurely quits,

no harm is caused to the other party. However, the

third party is a source of bottleneck for these protocols

and a single point of failure. Not only is the perfor-

mance of the third party an issue, but also its vulner-

ability to hacking activities and other denial of service

attacks.

The above factors motivate us to propose an e-

commerce protocol that is suitable for business trans-

actions involving digital products and that satisfies the

following goals. First, the protocol must provide

fairness under all circumstances. That is, fairness

should not be compromised if any party misbehaves

or prematurely aborts. Bao et al. [3] term this as the

loss-preventing property. Second, the protocol should

not require any manual dispute resolution in case any

party behaves unfairly. Third the protocol should not

rely on the availability of a single trusted third party.

Rather it should use a number of such parties, a

quorum of which should always be able to provide

the necessary service. Fourth, the interactions with the

third parties must be kept to a minimum level. Ideally,

the third parties should be invoked only in case of a

problem. Fifth, the protocol should allow the ex-

change of any digital goods and not be restricted to

specific applications, such as, digital signatures. In

particular, it should allow the exchange of some value

over the network—for example, digital money.

E-commerce protocols additionally raise several

privacy issues for the customer. First and foremost,

payment for such services often requires the customer

to provide considerable personal information to the

merchant which may be of a sensitive nature; for

example, if the payment is by credit card, the credit

card number has to be disclosed to the merchant; if

the payment is by electronic fund transfer, then

information about the customer’s financial institution,

account number, etc. are disclosed to the financial

institution and the merchant. The customer may

choose not to disclose such information to the mer-

chant (although the customer probably does not have

much option but to disclose the same to the financial

institution.). Moreover, it is astonishingly easy for the

merchant (or the financial institution) to monitor the

on-line activities of the customer that can be mined to
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create a customer profile. Such a profile can be used

later for profit by the merchant or the financial

institution in conjunction with the merchant, and the

customer may not really want this to occur. Finally,

the customer may just want his/her purchasing habits

be not available to others (for example, the customer

may be purchasing adult content over the Internet).

These factors motivate us to propose an anonymous

protocol that allows the customer to use a pseudo

identity for a transaction and pay for the product in

such a manner that the merchant is prevented from

linking a transaction to its source and the financial

institution is prevented from linking a customer’s

transaction to the corresponding product and/or the

merchant.

The protocol we propose has application in e-

commerce environments where the products ex-

changed are digital in nature. The merchant sells a

digital product that can be delivered to the customer in

the form of a message over a network. Some examples

of such products are daily news reports, stock quotes

and trading information, digital music and movies

(Apple Computer recently announced the formation

of such a service for selling music over the Internet—

see http://www.apple.com/music/). The customer pays

for the product also by sending a message; the

message contains some kind of a fund transfer infor-

mation from one financial institution to another—for

example, electronic checks, credit cards information,

etc. As mentioned earlier, fairness can be compro-

mised very easily in such environments. This is

because none of the participants need to have a

physically identifiable place to conduct the business

from. Our protocol is perfectly suitable in such

scenarios. No other protocol that we know of satisfies

all these goals.

The proposed protocol is based on some of our

previous work reported elsewhere [21]. The current

protocol significantly extends the earlier work. It

addresses the problem of anonymity of the customer

and optionally that of the merchant by incorporating a

new payment protocol. Also, it addresses the problem

of failure and compromise of the trusted third party by

distributing the functionality of the third party across

several entities. We organize the rest of the paper as

follows. In Section 2, we discuss some of the previous

works in fair-exchange protocols and compare them

with our approach. Section 3 lays the theoretical
foundation on which our protocol is built. We present

the initial protocol in Section 4. The handling of

misbehaving players is addressed in Section 5. Sec-

tion 6 provides an analysis of how the protocol

satisfies the fundamental properties of e-commerce

protocols. Next, in Section 7, we describe how we can

increase the robustness of the protocol by using a set

of trusted third parties rather than one single trusted

third party. Section 8 addresses the issue of anonymity

of the customer. To achieve anonymity, we borrow the

notion of untraceable electronic cash from the Dig-

icash protocol [8] and integrate the payment-by-dig-

ital-coin feature of Digicash into our protocol. We

demonstrate in Section 10 that the new protocol

satisfies all the desirable properties of e-commerce

protocols and additionally provides anonymity to the

customer. Finally, we conclude the paper in Section

10 by addressing some of the limitations of the

protocol and describing the work in progress to

address those issue.
2. Related work

Previous work on fair-exchange schemes can be

classified under two categories: (i) gradual exchange

protocols and (ii) third party protocols. In this section,

we briefly describe some of the important works and

compare them with our work.

2.1. Gradual exchange protocols

Gradual exchange protocols like the ones proposed

by various researchers [4,5,11,22], gradually increase

the probability of fair exchange over several rounds of

message exchanges. These protocols have extensive

communication requirements and majority of the pro-

tocols assume that both the players have equal com-

putational power.

The protocol presented by Blum [5] provides a

mechanism by which two players can exchange

secrets. The secrets are such that they are prime

factors of the players’ publicly announced composite

numbers. The two players exchange their respective

secrets bit by bit, alternately. For each bit provided to

the adversary, a player has to prove that the bit is

good, that is, it is part of the secret. The author shows

how the protocol can be used in conjunction with
www.manaraa.com
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digital signatures to sign contracts and send certified

emails.

Even et al. [11] propose the notion of a 1-out-of-2

oblivious transfer protocol. The authors define a

message to be a ‘‘recognizable secret message’’ if,

although the receiver cannot compute the message,

he/she can authenticate it once received. An oblivious

transfer of a recognizable secret message is a protocol

by which a sender transfers a message to the receiver

so that the latter gets the message with a probability of

0.5, while for the sender, the a posteriori probability

that the receiver got the message is 0.5. A special case

of the oblivious transfer protocol is the 1-out-of-2

oblivious transfer protocol by which the sender is able

to transfer exactly one secret out of two recognizable

secrets. Using the 1-out-of-2 protocol as the basis, the

authors propose protocols for contract signing, certi-

fied mail and coin flipping. In this protocol, like the

one by Blum [5], the two the players exchange the

items one bit at a time.

Ben-Or et al. [4] provide an approach in which

each party gradually releases information that incre-

mentally increases the probability that a fair exchange

is valid. This probability approaches one after several

rounds of message exchanges. This protocol, unlike

that proposed by Blum [5], does not require both

players to have equal computational power.

One of the major shortcomings of the protocols

described by researchers [4,5,11] is that they lack in

simultaneity of the exchange, and consequently, they

are not suitable for electronic commerce systems that

exchange some value over the network—for exam-

ple, digital money. If midway through the execution

of any of these protocols, one of the players decide to

stop the exchange, then it is possible that that player

will hold an unfair advantage over the other player.

Such midway, unilateral termination of an exchange

may be quite possible in real life. For example, the

transaction may seem profitable to a player when

viewed ex ante. However, during the course of the

transaction, some event occurs that modifies the

perception of the player about the transaction. Our

protocol, on the other hand, ensures fair exchange

even if a player aborts midway through the transac-

tion. Although we propose the protocol in the context

of exchange of value, the protocol can equally well

be used for fair exchange of any other digital

commodity.
Sandholm and Lesser [22] choose a game theoretic

approach in the context of automated negotiation

systems, to motivate the players to behave fairly in

the transaction. The authors propose a leveled com-

mitment contracting protocol that allows any player to

pay a penalty and withdraw from a contract due to

some unexpected event happening in the course of the

transaction. This ensures that no player has unfair

advantage over the other player at any point in the

protocol. However, the problem with this approach is

that the protocol assumes that both players behave

rationally during the protocol execution. For e-com-

merce transactions over the Internet, this is, we

believe, too strong a requirement. Our protocol impo-

ses no such requirement.

2.2. Third party protocols

The third party protocols, as proposed by the

researchers [9,10,13,26], each uses a trusted on-line

third party. The idea of using a trusted on-line third

party to obtain non-repudiation of origin and delivery

of an email message was proposed by Deng et al. [10]

and Zhou and Gollmann [26]. These protocols are

essentially similar. They differ in what information is

exchanged and how the information gets transferred

from one party to the other. The basic idea is as

follows. When A wants to send a message to B, A

encrypts the message with a key, and sends B the

encrypted message and a trusted third party the key. B

after submitting his proof of delivery can get the key

and read the message. In these protocols, the dispute

resolution is outside the scope of the protocol. How-

ever, the protocols do specify what evidence must be

stored and how they must be collected for the dispute

to be resolved in a fair manner. Our work, which

addresses the fair-exchange problem in the context of

electronic transactions, automatically does the dispute

resolution within the scope of the protocol itself and

without requiring any human intervention.

The NetBill system [9] is one of the earliest proto-

cols to provide a complete solution to the problem of

selling and delivering electronic goods. Our approach

is quite similar to the NetBill system and so we discuss

it in some details here. The NetBill system uses a

trusted third party called the NetBill server. The NetBill

server maintains accounts for both the customer and the

merchants, and is linked with conventional financial
www.manaraa.com
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institutions. The basic NetBill protocol is as follows.

The customer requests the merchant for the price of an

item. The merchant sends the price quote. The custom-

er then requests the merchant for the goods. The

merchant sends the goods encrypted with a key. Upon

receipt of this encrypted product, the customer supplies

the merchant with a signed electronic purchase order.

The electronic purchase order contains a segment that

has payment information. This portion is readable only

by the NetBill server. The merchant endorses the

electronic purchase order, and forwards it to the NetBill

server together with the decrypting key. The NetBill

server debits the customer’s account and credits the

merchant’s account and then sends a signed message to

the merchant that includes the result of the transaction

and an encrypted receipt intended for the customer. The

encrypted receipt contains the decrypting key, and the

status of the customer’s account after the transaction.

The receipt can be read only by the customer. The

merchant forwards the encrypted message to the cus-

tomer to complete the transaction. If, for some reason,

the merchant does not deliver the receipt, the customer

gets it from the NetBill server.

The goal of our protocol is similar to that of NetBill.

In NetBill, a merchant who has provided a worthless

good is detected only after the exchange occurs. The

protocol gathers evidence during protocol execution;

any dispute resolution is handled manually and is

outside the scope of the protocol. With our protocol,

on the other hand, the customer can verify whether the

merchant is delivering the product promised, before the

customer actually makes the payment. The customer is

guaranteed to receive the product for which he is

paying; the merchant is guaranteed to receive payment

for the product he has sold. Thus, fair exchange is

ensured. Further, any dispute resolution can be handled

automatically by the trusted third party without resort-

ing to manual intervention. The dispute resolution

involves both player receiving each other’s product.

A fair-exchange protocol that ensures the consis-

tency of the document has been proposed by Ketchpel

[17]. The basic protocol is as follows. After agreeing

upon the product and the price, the customer and the

merchant sign a contract which is forwarded to the

third party. The customer sends the payment to the

third party and the merchant sends the required

product to the third party. The third party verifies that

the product and payment satisfy the terms of the
contract and then forwards the product to the customer

and the payment to the merchant. Thus, the third party

plays an active role in this protocol. Our protocol, in

contrast, reduces the involvement of the third party.

Further, the third party in our protocol is not a source

of bottleneck. We use multiple third parties, a coterie

of which can resolve disputes and ensure fairness.

Franklin and Reiter [13] also propose a set of fair-

exchange protocols that verify the consistency of a

document before the exchange takes place. These

protocols require a semi-trusted third party. A semi-

trusted third party is one that can misbehave on its

own but will not collude with any of the participating

parties. The protocols use a one-way function f which

has the additional property that there exists another

efficiently computable function F such that F(x,

( f ( y)) = f (xy). The function, f, is known by both the

parties, and F is known by the third party.

The basic protocol is as follows. Suppose X and Y

wish to exchange some secret information KX and KY.

Before the protocol is initiated, it is assumed that X

and Y know f (KY) and f (KX), respectively. The first

step involves X sending a random number x1 (which

is in the domain of f ) to Y, and Y sending a similar

random number y1 to X. In the second step, X sends

the following to the third party: f (KX), f (KY), KXx1
� 1

and f ( y1) and Y also sends the corresponding compo-

nents to the third party. The third party makes some

comparisons to ascertain that each is sending the

correct components, and then forwards KXx1
� 1 to Y

and KY y1
� 1 to X. Y and X can multiply these by x1

and y1 respectively to get the respective keys.

One contribution of this paper is that the third party

is semi-trusted and the information that X and Y are

trying to exchange is never revealed to the third party.

Our protocol, in contrast, requires the third party to be

trusted. Franklin’s protocol requires an active involve-

ment of the third party for all scenarios. We resort to

the third party only when no one misbehaves or

aborts.

Three fair-exchange protocols that do not require the

involvement of the third party unless there is a problem

have been proposed by Bao et al. [3]. The first one

exchanges digital signatures on some document, the

second one exchange signatures on two documents,

and the third one exchanges a document and a signature

on the document. The important contribution of this

paper is that the authors provide a theory based on
www.manaraa.com
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which each party is able to verify that the signature he is

about to receive is indeed the correct signature, before

actually receiving the signature. However, the protocol

is not general, and does not apply when both the parties

want to exchange items of some value over the network

other than digital signatures. Asokan et al. [2] also

provides an optimistic protocol that deals with the fair-

exchange of digital signatures.

A more general protocol that allows exchange of

any two digital items has been proposed by Asokan

et al. [1]. This protocol does not involve the third

party unless one of the parties behaves unfairly or

aborts. The protocol begins by the two parties

promising each other an exchange of items. If they

do not agree on the terms of the exchange, the

protocol is aborted. Otherwise, the exchange takes

place. The items as well as non-repudiation tokens

are exchanged. In case of any failure or any party

misbehaving, the recovery phase is initiated. The

authors assume there is a reliable communication

channel between each party and the third party.

Hence, all the messages exchanged in the recovery

phase uses these reliable channels via the third

party. When any party misbehaves, the third party

can issue an affidavit which can be used in a court

of law in case of a dispute. Non-repudiation of

origin and non-repudiation of receipt is guaranteed

by these protocols. The protocol always guarantees

weak fairness, that is, an honest party can prove his

case in case of a dispute.

The main similarity with our work is that the third

party is not invoked unless there is a problem.

However, there are a number of significant differ-

ences with our work. The most significant difference

is that our protocol always ensures strong fairness,

whereas the protocol proposed by Asokan et al.

ensures only weak fairness. The other significant

difference is that dispute resolution is outside the

scope of Asokan et al.’s protocol. The honest party

can prove his case, but how he gets compensated or

the dishonest party punished is not elaborated. In our

protocol, the honest party is always compensated by

receiving the correct item. This is taken care of by

the protocol itself—no manual intervention is neces-

sary. A third difference is that in Asokan’s protocol

both the parties exchange descriptions of the item

before exchanging the items. Once an item is re-

ceived, the receiving party checks whether the item
matches the description or not. In our work, each

party is able to verify that the item he is about to

receive is the one he expects, before exchanging the

items. Another significant difference is that anonym-

ity of the customer is not preserved in Asokan’s

protocol. Our protocol does so. Last but not the least,

in Asokan’s protocol, the third party is a source of

bottleneck; in ours, it is not.
3. Theory of cross validation

Our protocol uses a novel approach based on

‘‘RSA like’’ cryptography to provide fair exchange.

We term this approach ‘‘cross validation’’. In this

section, we establish the theory.

We begin by assuming that the customer buys a

digital product and pays the merchant using a digital

payment token. (Later on, in Section 8, we show how

we modify the protocol so as to replace the payment

token with electronic cash.) For confidentiality as well

as integrity purposes, the digital product is encrypted

while in transit. The customer needs to get a decryption

key in order to decipher the encrypted product. The

encryption is assumed to be sufficiently strong that,

without the decryption key, the encrypted product is

useless to the customer. The customer receives the

decryption key if and only if the merchant receives

payment for the product. Thus, in order to validate the

product, the customer should be able to recognize the

contents of the encrypted product, without requiring to

decrypt it. Note that using cryptographic checksums

does not solve the problem of validation. There can be

two ways checksums can be added to the delivered

product.

1. The merchant sends a cryptographic checksum of

the actual product (i.e. the cryptographic checksum

computed before encryption). In this case, the

customer has no way of ascertaining that the

checksum corresponds to the actual product with-

out first obtaining the actual product.

2. The merchant sends a cryptographic checksum of

the encrypted product. This can at most guarantee

that the customer has received the encrypted

product correctly, without any error. This does

not provide any protection if the merchant sends

the wrong product.
www.manaraa.com
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With the above background information, we now

present the theory of cross validation.

Definition 1. The set of messagesM is the set of non-

negative integers m that are less than an upper bound

N, i.e.

MfmA0Vm < Ng ð1Þ
Definition 2. Given an integer a and a positive integer

N, the following relationship holds,

a ¼ qN þ r where 0Vr < N and q ¼ ta=N b ð2Þ
where t x b denotes the largest integer less than equal to

x. The value q is referred to as the quotient and r is

referred to as the remainder. The remainder r, denoted

a mod N, is also referred to as the least positive

residue of a mod N.

Definition 3. For positive integers a, b and N, we say

a is equivalent to b, modulo n, denoted by au b mod

n, if a mod n = b mod n.

Definition 4. For positive integers a, x, n and n>1, if

gcd(a, n) = 1 and a.xu 1 mod n, then x is referred to

as the multiplicative inverse of a modulo n.

Definition 5. Two integers a, b are said to be

relatively prime if their only common divisor is 1, that

is, gcd(a, b) = 1.

Definition 6. The integers n1, n2, . . ., nk are said to be

pairwise relatively prime, if gcd(ni, nj) = 1 for i p j.

Definition 7. The Euler’s totient function /(N) is

defined as the number of integers that are less than N

and relatively prime to N. Below we give some

properties of totient functions that we need in this

paper.

1. /(N) =N� 1 if N is prime.

2. /(N) =/(N1)/(N2). . ./(Nk) if N =N1N2. . .Nk and

N1, N2,. . ., Nk are pairwise relatively prime.

Theorem 1. Euler’s theorem states that for every a

and N that are relatively prime,

a/ðNÞu1 mod N

Proof of Theorem 1. We omit the proof of Euler’s

theorem and refer the interested reader to any book on
number theory (see, for example, Ref. [19]) or on

cryptography (for example, Ref. [24]). 5

Corollary 1. If 0 <m<N and N=N1N2 . . . Nk and

N1, N2, . . ., Nk are primes, then mx/(N) + 1um mod N.

Definition 8. A key K is defined to be the ordered pair

he, Ni, where N is a product of distinct primes, NzM

and e is relatively prime to /(N); e is the exponent and
N is the base of the key K.

Definition 9. The encryption of a message m with the

key K = he, Ni, denoted as [m, K], is defined as

½m; he;Ni� ¼ me mod N ð3Þ

Definition 10. The inverse of a key K = he, Ni,
denoted by K� 1, is an ordered pair hd, Ni, satisfying
edu 1 mod /(N).

Theorem 2. For any message m,

½½m;K�;K�1� ¼ ½½m;K�1�;K� ¼ m ð4Þ

where K = he, Ni and K� 1 = hd, Ni.

Proof of Theorem 2. We first show that

½½m;K�;K�1� ¼ m

L:H:S: ¼ ½½m;K�;K�1�

¼ ½me mod N ;K�1� ðfrom Definition 9Þ

¼ ðme mod NÞd mod N ðfrom Definitions 9

and 10Þ
¼ med mod N ðfrom laws of modular

arithmeticÞ
¼ mðx/ðNÞþ1Þ mod N ðfrom Definitions 2

and 10; ed ¼ x/ðNÞ þ 1Þ
¼ m mod N ðfrom Corollary 1Þ
¼ m ðsince we assume m

< N ; see Definition 1Þ
¼ R:H:S:

By symmetry [[m, K� 1], K] =m. 5
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Corollary 2. An encryption, [m, K], is one-to-one if it

satisfies the relation

½½m;K�;K�1� ¼ ½½m;K�1�;K� ¼ m

Definition 11. Two keys K1 = he1, N1i and K2 = he2,
N2i are said to be compatible if e1 = e2 and N1 and N2

are relatively prime.

Definition 12. If two keys K1 = he, N1i and K2 = he,
N2i are compatible, then the product key, K1�K2, is

defined as he, N1 N2i.

Lemma 1. For positive integers a, N1 and N2,

ða mod N1N2Þua mod N1

Proof of Lemma 1. Let a =N1N2x +N1 y + z, where x,

y and z are integers.

L:H:S: ¼ ða mod N1N2Þ mod N1

¼
 
N1N2xþ N1yþ z� N1N2xþ N1yþ z

N1N2

� �

� N1N2

!
mod N1 ¼ðN1yþ zÞ mod N1 ¼ z

R:H:S: ¼ ða mod N1Þ
¼ ðN1N2xþ N1yþ zÞ mod N1 ¼ z

Hence the proof. 5

Theorem 3. For any two messages m and m̂, such

that m, m̂ <N1, N2,

½m;K1 � K2�u½m̂;K1� mod N1 if and only if m ¼ m̂

ð5Þ

½m;K1 � K2�u½m̂;K2� mod N2 if and only if m ¼ m̂

ð6Þ

where K1 is the key he,N1i, K2 is the key he,N2i and
K1�K2 is the product key he, N1 N2i.

Proof of Theorem 3. The proof for Eq. (6) is the

same as that for Eq. (5). We just consider the proof for

Eq. (5).
[If part] Given m = m̂, we have to prove that [m,

K1�K2]u [m̂, K1] mod N1, that is,

½m;K1 � K2� mod N1 ¼ ½m̂; K1� mod N1

L:H:S: ¼ ½m; K1 � K2� mod N1

¼ ðme mod N1N2Þ mod N1 ðfrom Definitions

9 and 10Þ

¼ me mod N1 ðsubstituting me for a in

Lemma 1Þ

[Only If part] Given [m, K1�K2]u [m̂, K1] mod

N1, we have to prove m = m̂

½m;K1 � K2�u½m̂;K1� mod N1

or ½m;K1 � K2� mod N1 ¼ ½m̂;K1� mod N1

ðfrom Definition 3Þ

or ðme mod N1N2Þ mod N1 ¼ ðm̂e mod N1Þ mod N1

ðfrom Definitions 9 and 12Þ

or ðme mod N1N2Þ ¼ ðm̂e mod N1Þ

or me mod N1 ¼ ðm̂e mod N1Þ mod N1

ðfrom Lemma 1Þ

or ½m; he;N1i� ¼ ½m̂; he;N1i� ðfrom Definition 9Þ

or m ¼ m̂ ðsince the encryption is one to� oneÞ

5

3.1. Validated receipt property

The validated receipt property is stated as follows:

Definition 13. An electronic commerce protocol is

said to satisfy validated receipt if a customer is able

to ensure within the scope of the protocol and before

the customer pays for a product, that the product the

customer is about to receive from a merchant, is the

same as the product the customer intended to

purchase.

The validated receipt property is desirable for elec-

tronic commerce protocols. E-commerce protocols

operate in an environment where the customer and

the merchant do not trust each other. The presence of
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validated receipt will give some confidence to the

customer that he will receive the correct product if he

makes the payment.

Our protocol achieves the validated receipt property

using the results of Theorem 1. Let m be the product to

be delivered to the customer. The trusted third party

generates keys KM= he,Ni and KM
� 1 and provides KM

to the merchant. The merchant provides the product m

to the trusted third party to be encrypted with KM and

placed at a public place, henceforth called the catalog,

as an advertisement for m. When the customer decides

to purchasem from themerchant, the customer acquires

T=[m,KM] from the catalog and keeps it for future

validation of the product received.

To sell m to the customer, the merchant selects a

second set of keys (KM1
, KM1

� 1) such that KM1
=

h e,N1i is compatible with KM according to Definition

11. The merchant provides the customer with TV=
[m, KM�KM1

].

The customer verifies that [m, KM] and [m,

KM�KM1
] are encryption of the same message m

by verifying: Tu T Vmod N1, as per Eq. (5).

When satisfied, the customer sends the payment

token. The merchant, in return, sends the decrypting

key KM1

�1. The customer obtains m using m=[T V,KM1

�1.

The proof of correctness follows from Theorem 3:

½m;KM � KM1
�u½m̂;KM� mod N1

if and only if m ¼ m̂

3.2. Security

In the theory presented in Eq. 3, if e is chosen small

and a customer can guess e1, we can have a security

problem. Assume that the exponent e is small, say e = 3.

A customer starts as if he is buying the same product m

three times, but always stops after having received [m,

KM1
�KM2

], [m, KM1
�KM3

], [m, KM1
�KM4

],

where KM2
= he,N2i, KM3

= he,N3i and KM4 = he,N4i.
Let N =N1�N2�N3�N4. Knowing me mod Ni,

for i = 1, . . .,4, the attacker can, using the Chinese

remainder theorem [19], compute z =me mod N.

Since 0 <m <Ni, m
e<N and hence z =me. By extract-

ing the eth root of z, the customer can get m. Thus, a
1 Although we use an asymmetric cryptographic system in this

protocol, unlike public key cryptosystems, we do not disclose the

exponent e.
customer can get the product, without paying for it.

Note that this attack is similar to the low exponent

attack on the RSA cryptosystem [16]. This mode of

attack requires the attacker to try all possible primes

less than e. Also, the size of z increases as e

increases, thus, making this an infeasible mode of

attack when e is sufficiently large.

We provide an additional mechanism using which

the security will not be compromised even if the

customer can guess e correctly. For every transaction

that the merchant performs, the merchant chooses a

random number r such that r is relatively prime to N2.

The customer downloads [m, KM] from the third party.

Rather than sending [m, KM�KM1
] to the customer,

the merchant sends the following: [mr,KM�KM1
],

[r,KM], where mr is the product of m with r. To

validate the product, the customer multiplies [m,KM]

with [r,KM] and the resulting product is compared

with [mr,KM�KM1
]. If both match, the customer is

confident that the product he is about to receive is the

one he is going to pay for. Finally, instead of sending

just KM1

� 1, the merchant now sends KM1

� 1 and r� 1

where r� 1 is the multiplicative inverse of r modulo

N1. Using the decrypting key KM1

� 1, the customer

obtains mr mod N1. Multiplying this by r� 1 the

customer can retrieve m.
4. The fair-exchange protocol

To present our protocol, we begin by defining the

terms we use in the protocol description.

4.1. Terminologies

Definition 14. A third party is a participant in an e-

commerce protocol who is neither a customer nor a

merchant but whose involvement in the protocol is

important for its proper functioning.

Definition 15. A trusted third party is a third party

which is relied on not to misbehave or collude with

any one of the transacting parties to the detriment of

the other.

Definition 16. An electronic commerce protocol

satisfies the money atomicity property [25] if money

is neither created nor destroyed during the execution

of the protocol.
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Table 1

Symbols used in protocol description

Symbol Interpretation

C, M, B

and TP

Ids for customer, merchant, customer’s financial

institution and trusted third party

Aprv, Apub A’s private and public keys

AZ B: X A sends X to B

[X,K] encryption of X with key K

CC(X) A cryptographic checksum of X, using an

algorithm such as the Secure Hash [18]

wA A nonce for entity A. Each entity’s nonces is

unique

KC1
Key given by the customer’s financial institution

KC1

� 1 The decrypting key corresponding to KC1 kept by

the financial institution

KC2
Key generated by the customer that is compatible

with KC1

KC2

� 1 Decrypting key corresponding to KC2

KM Key given by the trusted third party to the

merchant

KM
� 1 The decrypting key corresponding to KM1

, held by

the trusted third party

KM1
Key generated by the merchant that is compatible

with KM1

KM1

� 1 Decrypting key corresponding to KM2

r Random number chosen by merchant for current

transaction

r� 1 Multiplicative inverse of r modulo N1, where N1

is the base for key KM1

m Product the customer purchases

PID The id for product m

PO Purchase order used by the customer to order

product m

CAct Customer’s account information with customer’s

financial institution

PR Price of the product

PT Payment token used for paying for the product
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Definition 17. A fair-exchange electronic commerce

protocol is one in which two players exchange items of

value in such a manner that no player can gain an

advantage over the other by misbehaving, misrepre-

senting or by prematurely aborting the protocol. In

other words, in a fair-exchange protocol, either the

exchange takes place completely or does not take place

at all. Fair-exchange is a more general term for the

goods atomicity property [25]. Goods atomicity

ensures that a merchant receives payment if and only

if the customer receives the goods. The term goods

atomicity is used in the context of e-commerce,

whereas fair-exchange is used in a more general sense.

Definition 18. An optimistic fair-exchange protocol is

a fair-exchange protocol that relies on a trusted third

party but does not require the active involvement of

the third party.

An optimistic protocol assumes that most of the time

the players will not misbehave—that is why optimistic.

Only when something wrong happens, the third party is

contacted to resolve the dispute.

The protocol that we describe here is an optimistic

fair-exchange protocol that satisfies the validated-

receipt property.

4.2. Assumptions

Wemake the following assumptions in the protocol:

1. We assume that all encryptions are strong enough

that the receiver of an encrypted message is unable

to decrypt the message without the appropriate key.

Similarly, cryptographic checksums are strong

enough to ensure integrity of messages and digital

signatures are strong enough to provide non-

repudiable evidence about the identity of the

signatory.

2. All parties use the same algorithm for encryption as

well as for generating cryptographic checksums.

3. Payment for product is in the form of a token, PT,

that is accepted by the merchant.

4. Each party involved in the transaction keeps a copy

of the information that it sends to the other party in

its stable storage till such time as the information is

no longer needed. Writes to the stable storage are

atomic and durable until intentionally purged.
5. A system wide constant time out period known to

all parties.

Table 1 lists the notations used in the description of

the protocol.

4.3. Protocol description

Before the protocol begins, we assume that the

following steps have already executed that sets up the

environment in which the protocol operates.

1. The customer opens an account with a financial

institution. The latter generates a key pair KC1
,

KC
� 1, provides the customer KC and escrows KC

� 1
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with itself. For any financial transaction that the

customer performs and that involves payment via

this financial institution, the customer is obligated

to use product keys KC1
�KC2

, KC1
�KC3

. . ., and
so on, where KCj, j p1, is compatible with KC1

. For

this discussion, we will assume that the customer

uses KC1
�KC2

as the product key.

2. Merchant registers with trusted third party. The

latter generates the key pair KM, KM
� 1, provides the

merchant with KM and escrows KM
� 1 with itself.

For every product, m, that the merchant wants to

advertise in the catalog at this trusted third party,

the merchant sends m and the description of m

containing the product identifier, PID, to the third

party. The third party performs the encryption

before uploading [m, KM] on the catalog. In this

manner the third party is able to certify that the

product meets its claim. To sell a product, m, the

merchant sends the customer [m, KM�KMj], where

KMj
is compatible with KM. For this discussion, we

assume that the merchant uses KM1
as the

compatible key.

The protocol executes in the following five steps

when no party misbehaves or prematurely quits. The

messages exchanged in the protocol are shown in

Fig. 1. Note that only the major contents of each

message is shown in the figure.
Fig. 1. The basic protocol.
Message 1

TPZC : ½m;KM�:

The customer downloads [m, KM] from the trusted

third party server together with the product identifier,

PID. Note that the customer does not actually have the

product m, because he does not have the decrypting

key KM
� 1. This [m, KM] will be used later by the

customer to validate the product received from the

merchant.

Message 2

CZM: PO; ½CCðPOÞ;Cprv�; ½½PT;KC1
� KC2

�;Bprv�;B:

The customer initiates the e-commerce transaction

by associating a unique system-wide identifier Ti for

the transaction. The identifier is a tuple of the form

hPID, C, Mi. The customer stores a log record of the

form hTi, INITIATEi to its stable storage and then

sends Message 2 to the merchant. The purchase order,

PO, contains the following information:

(i) the product identifier, PID;

(ii) the customer’s identity, C;

(iii) the merchant’s identity, M;

(iv) the price of the product, PR; and

(v) a nonce, wC, for the customer.

The customer generates a cryptographic checksum

of PO and digitally signs it. The cryptographic check-

sum forestalls debate over the details of the order, or

whether the order was received completely and cor-

rectly. The customer’s signature forestalls debate over

whether the customer expressed intention to purchase

the product. The nonce, wC, in the purchase order

forestalls a replay of the purchase order with the

merchant.

The payment token, PT, contains the following

information:

(i) the identity of the customer’s financial institution,

B;

(ii) the identity of the customer, C;

(iii) the customer’s account information, CAct at B;

(iv) the price the customer will pay for the product,

PR;

(v) a nonce, wC, for the customer.
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The payment token is first encrypted with the

product key KC1
�KC2

and then digitally signed by

the customer’s financial institution. The financial

institution’s signature ensures that the customer has

sufficient fund for payment for the product. Note that,

since the financial institution has the key KC1

� 1, it is

able to verify the contents of PT before signing.

In addition, the customer also send the identity of

its financial institution, B.

Message 3

MZ C: ½½CCðPOÞ;Cprv�;Mprv�; ½mr;KM � KM1
�;

½r;KM1
�; ½CCð½r;KM1

�Þ;Mprv�;
½CCð½mr;KM � KM1

�Þ;Mprv�

OR

MZ C : Abort

When the merchant receives Message 2 from the

customer, it writes a log record hTi, INITIATEi to its

stable storage; then the merchant checks to see if the

purchase order is to its satisfaction—that is, the mer-

chant agrees to all its contents and is able to verify the

signature of the customer’s financial institution on [PT,

KC1
�KC2

]. If not, the merchant writes an abort record

in its stable storage—hTi, ABORTi—and aborts the

transaction. It informs the customer of this decision.

Otherwise, the merchant endorses the purchase order

by signing [CC(PO), Cprv]. The merchant sends this

endorsed purchase order together with the encrypted

product [mr, KM�KM1
], its signed cryptographic

checksum [CC([mr, KM�KM1
]), Mprv], the random

number, r, encrypted with KM1 and its cryptographic

checksum. The merchant’s endorsement on the pur-

chase order forestalls debate over whether the purchase

order was received correctly or not and whether the

merchant agreed to the terms of the current transaction.

The signed cryptographic checksum [CC([mr,

KM�KM1
]), Mprv] proves the origin of the encrypted

product [mr, KMKM�KM1
] as well as ensures the

integrity of [mr, KM�KM2
] in transit.

Message 4

CZ M : ½K�1
C2

;Mpub�; ½CCð½m;KM � KM1
�Þ;Cprv�

OR

CZ M : Abort; ½CCð½m;KM � KM1
�Þ;Cprv�
After receiving Message 3 from the merchant,

the customer checks to see if it is an abort message

or the encrypted product. If it is an abort, the

customer aborts the transaction and writes a log

record of the form hTi, ABORTi. Otherwise the

customer validates the product as outlined in Sec-

tion 3.2. If the two compare, the customer sends

the payment token decryption key, KC2

� 1 to the

merchant, encrypted by the merchant’s public key

and a signed cryptographic checksum of the

encrypted product received. The customer then

writes a log record to its stable storage. The log

record is of the form hTi, PAYMENT-SENTi. Finally
the customer starts a timer, waiting for the product

decryption key to arrive from the merchant. If the

timer expires before the product decryption key

arrives from the merchant, the customer executes

the extended protocol. If, on the other hand, the

product is not validated the customer can request

the product from the merchant once more, or abort

the transaction. For the latter the customer enters

hTi, ABORTi in its log and sends an abort message

to the merchant together with a signed cryptograph-

ic checksum of the product received from the

merchant. The signed cryptographic checksum of

the encrypted product forestalls debate over whether

the encrypted product received by the customer is

the same as the encrypted product sent by the

merchant.

Message 5

MZ C : ½K�1
M1

;Cpub�; ½r�1;Cpub�

Once the merchant receives the decrypting key

KC2

� 1 from the customer, the merchant obtains the

payment token PT, that is the payment for the

product sold. The merchant then sends the product

decryption key, KM1

� 1, to the customer encrypted

with the customer’s public key and also the multi-

plicative inverse of r modulo N1, namely, r� 1.

Finally it writes a log record hTi, FINISHi. When

the customer receives the product decryption key

and obtains the product m, the customer writes a

log record hTi, FINISHi, and the protocol termi-

nates. If instead of the decryption key, the merchant

receives an abort message from the customer (in

Message 4), it terminates the transaction after

writing the log record hTi, FINISHi.
www.manaraa.com



I. Ray et al. / Decision Support Systems 39 (2005) 267–292 279
5. Extension for handling misbehaving parties and

communication problems

Certain changes need to be made to the basic

protocol to ensure fair exchange if any player mis-

behaves or if there is a communication failure. Our

aim is to handle disputes automatically within the

protocol without resorting to a human arbitrator. By

‘‘handling disputes automatically within the proto-

col’’, we mean that the suffering party does not have

to take recourse to a separate legal system to be

compensated for.

The extended protocol described below is executed

if the timer used by the customer (see Message 4 in

the basic protocol) expires and the basic protocol does

not execute to completion or if there is a dispute after

the protocol execution. Note that since the merchant

sends the decryption key only after it has received

payment in a satisfactory matter, it will always be the

case that the customer initiates the extended protocol.

The extended protocol involves interaction with the

trusted third party and is initiated by the customer by

sending M, [[CC(PO), Cprv], Mprv], [CC([mr,

KM�KM1
]), Mprv], [CC([r, KM1

]), Mprv]—evidences

of the merchant misbehaving—and the key [KC2

� 1] and

the payment token [[PT,KC1
�KC2

], Bprv] and B.

M behaves improperly. This includes the follow-

ing scenarios.

1. Merchant receivesMessage 4 but does not send the

correct product decryption key KM1

� 1 in Message 5.

2. Merchant receives Message 4 but disappears

without sending the product decryption key.

3. Merchant claims that it did not send correct

decryption key because it has not received payment.

The trusted third party asks the merchant to send

the product decryption key and starts a timer. If the

merchant does not respond within the timeout

period, the trusted third party sends the key KM
� 1

to the customer and takes appropriate action against

the merchant. If the merchant responds within the

timeout by sending KM1

� 1, the third party forwards it

to the customer. The merchant can also respond by

saying that the reason it did not send the product

decryption key in the first instance, is because it

did not receive proper payment, that is KC2

� 1. In this

case, the merchant still has to provide the trusted
third party with KM1

� 1 and r� 1. The trusted third

party sends KC2

� 1 to the merchant and KM1

� 1 and r� 1

to the customer.

C behaves improperly. In such an event, the third

party looks at all the messages and finds out that the

customer has sent an incorrect key. In such a case, the

third party does not forward the product key to the

customer.

Note that the following two disputes are not

entertained.

1. Merchant claims that it has received inadequate

payment. The reason why it is not entertained is

that the merchant always sends the product

decryption key after it has an opportunity to ensure

that proper payment has been received.

2. Customer claims after decrypting the product that

the correct product was not provided by the

merchant. The reason why this is not entertained

is that the validated receipt property allows the

product to be validated. In other words, if the

product does not validate, the customer always has

the option of aborting the transaction without

paying.
6. Analysis of the properties of the optimistic

protocol

Assuming that neither the customer nor the mer-

chant behaves unfairly in the protocol, we show that

the protocol satisfies the properties of money atom-

icity, fair exchange and validated receipt.

Theorem 4. The optimistic protocol satisfies the

money atomicity property.

Proof of Theorem 4. Assume to the contrary.

Money can be created in the system in two

different ways.

1. The customer uses the same payment token to

purchase multiple products.

2. The merchant uses the same token to get its

account credit multiple number of times.

Both of these are examples of replaying the pay-

ment token. The nonce value within the payment
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token prevents such replays. Thus money cannot be

created in the system.

Money can be destroyed in two different manners.

1. The merchant does not use the payment token to

get its account credited.

2. The token is lost after the merchant receives it but

before the merchant could get its account credited.

The merchant is assumed to behave rationally and

thus it will always use the payment token properly. To

protect against the second scenario the merchant can

always keep a second copy of the token or approach

the third party in good faith. Thus, money is neither

created nor destroyed in the system and hence the

protocol ensures money atomicity. 5

Theorem 5. The optimistic protocol ensures fair

exchange.

Proof of Theorem 5. Note that fair-exchange will be

violated if one of two things happen at the end of the

protocol.

Case 1. The customer receives the product, m, but the

merchant does not receive correct payment.

Case 2. The merchant receives correct payment but

the customer receives the wrong product.

We show that none of these two cases can happen

at the end of the protocol. For Case 1 to happen, the

customer must receive the product before it pays.

Observe that the product is delivered to the customer

in an encrypted form in Message 3 (Fig. 1). To

receive the product the customer must have the

corresponding product decryption key. The customer

does not receive the product decryption key (in

Message 5) until after the customer has effectively

made a payment for the product (sending the payment

token decryption key, KC2

� 1, in Message 4). If the

payment token decryption key is a correct decryption

key, then Case 1 does not arise. If on the other hand

the payment token decryption key is not a correct

decryption key, then the merchant does not send the

product decryption key in Message 5. Thus, either

way, Case 1 cannot arise at the end of the protocol.

For Case 2 to happen, the merchant either does not

send the product decryption key or sends the wrong
decryption key in Message 5 of the basic protocol

(Section 4.3). Under both circumstances, the extended

protocol is executed (Section 5) and the protocol

terminates with the customer receiving the product it

has paid for.

Hence, fair-exchange is ensured in the protocol. 5

Theorem 6. The optimistic protocol satisfies the

validated receipt property.

Proof of Theorem 6. The customer receives a copy

of the encrypted product before sending out the

payment for the product (in the form of the decryption

key for the payment token PT). The customer is able

to compare this copy of the encrypted product with

the one he has downloaded earlier from the trusted

third party’s catalog and make sure that both are

encryptions of the same product. In other words, he

has received the encrypted version of the product that

he is trying to purchase. Theorem 3 ensures this.

Thus, the protocol satisfies the validated receipt

property. 5
7. Increasing the robustness of the protocol

We have seen that the optimistic protocol relies

on the trusted third party to resolve disputes and

ensure fair exchange in the event of the merchant

playing unfairly. Although we do not require the

third party to be on-line for the entire duration of

the transaction—the third party is invoked only

when there is a problem, not otherwise—it is still

a source of bottleneck and susceptible to denial of

service attacks. For example, the customer tries to

initiate the extended protocol but fails to contact

the third party. Or, suppose the customer has

initiated the extended protocol for dispute resolu-

tion. However, the third party is not being able to

contact the merchant because the connection to the

merchant has failed. In this case, the third party’s

timer will expire and the third party will take the

extreme measure of providing the customer with

KM
� 1. Under this scenario, the merchant is not

offered an opportunity to state its case and suffers

due to no fault of its own. We can mitigate this to

some extent by not requiring the third party to

disclose the key KM
� 1 to the customer. Instead the
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third party decrypts [m,KM] with KM
� 1, and provides

m to the customer. Later the third party may take

up the issue with the merchant. However, if the

link is down for a very long time, then the third

party may interpret this as the merchant having

disappeared.

Having a single third party makes the protocol more

vulnerable to hacking activities at the third party. Recall

that for each merchant that chooses to avail of the

services of the third party, the latter escrows a key for

the merchant—the key KM
� 1. The merchant encrypts

every copy of every product that it sells, with the key

KM�KMi
, such that the keyKMi

is compatible withKM.

If the trusted third party is compromised, then the

merchant suffers financially because the corresponding

key KM
� 1’s is compromised.

To minimize these problems, we distribute the

services of the third party across several third parties.

This impacts two aspects of the protocol—(i) distrib-

uting the key KM
� 1 and (ii) executing the extended the

protocol. We discuss these next.

7.1. Distributing the key KM
�1

If we replicate the key KM
� 1 over several servers,

then we expose the key to more attacks. Thus, the key

becomes more vulnerable than it would otherwise be

if there was just one server storing the key. However,

if we can partition the key into n parts KM1

� 1, KM2

� 1,. . .,
etc., and provide each part to a separate third party

such that some or all of these third parties can later get

together to reconstruct the key, then such a distribu-

tion is more secure.

Definition 19. Given a key, K, a protocol to

partition the key into n disjoint portions and

distribute these among n different entities, is p-

secure if less than p parties, pV n, cannot regenerate

the key K.

If a key K is partitioned in a p-secure manner,

then it is guaranteed that the compromise of any

number q < p of parties cannot jeopardize the confi-

dentiality of the key. However, making p = n has

some disadvantages; in this case, if any one of the

parties holding a share of the key fails, then the key

cannot be reconstructed. This leads to the definition

of p-availability.
Definition 20. Given a key, K, a protocol to partition

the key into n disjoint portions and distribute these

among n different entities, is p-available if greater

than or equal to p, pV n, parties can regenerate the

key.

Shamir [23] proposed a scheme based on polyno-

mial interpolation by which a secret can be partitioned

into n parts such that a subgroup consisting of m or

more portions (mV n) can be used to reconstruct the

secret. We employ a similar scheme to distribute the

key KM
� 1 across several third parties.2

We assume that there are n third parties T1, T2, . . .,
Tn. The merchant knows the identity of each of these

third parties and registers with any one of the third

parties. We also assume that some p or more number

of these third parties need to get together to regenerate

the key.

1. M registers with third party T1. T1 generates the

merchant key-pair (KM,KM
� 1) and provides KM to

the merchant.

2. The third party T1 randomly generates a ( p� 1)

degree polynomial.

y ¼ ap�1x
p�1 þ ap�2x

p�2 þ . . .þ a1xþ K�1
M

The coefficients ap� 1, ap� 2, . . ., a1 are chosen

randomly over the finite field GF(N).

3. Next T1 chooses n random points (x1,y1), (x2,y2),

. . ., (xn,yn) on the polynomial. Each point (xi,yi)

corresponds to one of the shares for the key KM
� 1.

4. T1 destroys the key KM as well as the polynomial

y = ap � 1x
p � 1 + ap � 2x

p � 2 + . . . + a1x +KM
� 1. T1

stores in its database a record of the form <M,

(x1,y1)>. The value (x1,y1) constitutes T1’s portion

of the key for M.

5. T1 generates (n� 1) tuples of the form hM,(xi,yi)i,
1 < iV n, with each of the remaining values (xi,yi)

and distributes them securely to each of the other

third parties.
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Theorem 7. The key partitioning scheme is p-secure

and p-available.
Proof of Theorem 7. To prove that the protocol is p-

secure, we need to show that less than p portions do

not disclose any information about the key, KM
� 1.

Note that each portion (xi,yi) of the key, KM
� 1

assigned to a third party is a point on the ( p� 1) degree

polynomial y=ap � 1x
p � 1 + ap � 2x

p � 2 + . . .+ a1x +

KM
� 1. This curve intersects the y-axis at exactly one

single point, which is the key. If we have less than p

portions of key, then there can be many ( p� 1) degree

polynomials that pass through those points and that

intersect with the y-axis—all of which can possibly be

the key. Or in other words, given less than p portions of

the key, we cannot uniquely identify the key. Hence, the

partitioning scheme is p-secure.

To prove that the protocol is p-available, we

need to show that greater than or equal to p

portions can regenerate the key. This is true

because there can at most be one ( p� 1) degree

polynomial that passes through p or more given

points. Lagrange’s interpolation formula can be

used to uniquely determine this polynomial. The

intersection of the ( p� 1) degree polynomial, with

the y-axis is the key. 5

7.2. Executing the extended protocol

As before the extended protocol is executed if the

timer used by the customer (see Message 4 in the

basic protocol) expires and the basic protocol does

not execute to completion, or if there is a dispute in

the protocol execution. The customer initiates the

extended protocol by contacting any one of the third

parties that participates in the protocol. The customer

sends that third party the message containing M, {M,

[[CC(PO), Cprv], Mprv]}, {[CC([mr, KM�KM1
]),

Mprv]}, [CC([r, KM1
]), Mprv]—evidences of the mer-

chant misbehaving—and the key [KC2

� 1], the identity

of the financial institution B, and the payment token

[PT, KC1
�KC2

].

The trusted third party tries to resolve the dispute

as earlier. However, if everything else fails and the

only recourse the third party has is to provide the

customer with the key KM
� 1, then the third party gets

in touch with p� 1 of the other third parties to gather

p portions of the key KM
� 1. It then regenerates the key
KM
� 1 as described earlier and provides that to the

customer.
8. Providing anonymity for the customer

For reasons stated in Section 1, a customer may

want to have its privacy protected. A merchant, on the

other hand, will rarely want to hide its true identity. It

seldom makes good business sense to do so. Conse-

quently, we are more interested in ensuring the privacy

of the customer. We first formally define what it means

for a protocol to provide customer anonymity.
Definition 21. An e-commerce protocol provides

customer-anonymity if no participant can link an

executed transaction to a customer’s true identity.
For our protocol, the customer’s identity is avail-

able to the merchant in two different manners. The

first is via the signature on the purchase order and the

second is indirectly via the payment token. The only

purpose the signature on the purchase order serves is

to provide a non-repudiable proof of the customer’s

intention to purchase a product at an agreed upon

price. The identity of the customer is important only

to the extent that the identity can be linked to the

signature. No other information about the customer is

available from the signature.

More information about the customer is however

available from the payment token. The payment

token contains detailed information about the cus-

tomer’s identity at the customer’s financial institu-

tion, the customer’s account information and the

amount of the transaction. Once the merchant gets

the payment token, the merchant has detailed infor-

mation about the customer (particularly so if it

colludes with the customer’s financial institution)

with which it can create a customer profile. The

customer may not be willing to divulge or share this

information. In short, the customer may want some

degree of anonymity.

The approach that we choose to provide anonymity

to the customer is to use the digital equivalent of cash

in the transaction. Okamoto and Ohta [20] identified

six properties that any electronic cash system must

have.
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1. The cash should be sent securely through computer

networks.

2. The cash cannot be copied and reused.

3. The spender of the cash can remain anonymous if

needed.

4. The transaction can be done off-line.

5. The cash can be transferred to others.

6. A piece of cash can be divided into smaller

amounts.

The commercially available protocol known as

‘‘eCashk’’ provides such functionality. It is based on

‘‘Digicash’’ [8]. However, the problem with Digicash,

and consequently with eCash, is that it does not provide

either money atomicity or goods atomicity (fair ex-

change) [15]. Nor does it provide the validated receipt

property. In this section, we show how we can modify

our basic protocol to accommodate an electronic cash

facility similar to eCash, yet preserving the money

atomicity, fair-exchange and validated receipt proper-

ties. At the same time, the merchant does not obtain

enough information about the customer to create a

customer profile. Neither does the customer’s financial

institution have enough information on its own to link a

particular transaction to the customer.

To keep the protocol simple, we relax some of the

properties of electronic cash systems identified by

Okamoto and Ohta [20]. In particular, we disallow

the transfer of electronic cash to others (relaxing item

5 above); we do not require that a piece of electronic

cash be divisible into smaller amounts (relaxing item

6); we also assume that all the coins issued by the

bank have the same denomination; finally we require

that the transaction with the bank be done in an on-

line manner.

8.1. The optimistic, anonymous protocol

Briefly, the anonymous protocol executes as

follows.

1. Customer decides to buy product and downloads

an encrypted version from the trusted third party

(as in the basic protocol).

2. Customer buys digital coins of appropriate value

from the customer’s bank.

(a) Customer sends unsigned blinded coins with

unique serial numbers to the bank.
(b) The bank debits the customer’s account by the

relevant amount.

(c) The bank signs the blinded coin and sends them

back to the customer.

(d) Customer un-blinds the coin to get a signed

digital coin having the necessary value.

3. Customer sends signed digital coins, properly

encrypted, to the merchant together with the

purchase order.

4. Merchant sends the encrypted product.

5. Customer validates encrypted product and sends

the decryption key for the digital coin.

6. Merchant verifies with customer’s bank that the

coins are still valid, that is they are not already spent.

7. The bank notifies merchant that coins are still

valid, credits the merchant’s account and records in

a database the serial number of the coin spent.

8. Merchant sends product decryption key and

completes transaction.

The anonymous optimistic protocol is shown in

Fig. 2.

The generation and use of electronic cash in our

protocol requires the use of blind signatures. The idea

of blind signatures is as follows. Suppose that a

message m has to be signed by an entity, but without

the signer knowing the contents of the message. Then

the generator of m should be able to

1. randomize m so that the signer cannot determine m,

2. obtain the signature on the randomized message,

3. undo the randomization to obtain the signature on

the original message.

Chaum [6,7] has shown how to implement such

blind signatures based on integer factorization. The

scheme, briefly, is as follows: Suppose a customer, C,

has a message m that she wishes to have signed by her

financial institution, B. C does not want B to learn

anything about m. Let (n,e) be B’s public key and

(n,d) be its private key. C generates a random value r

such that gcd(r,n) = 1 and sends x= (rem) mod n to B.

The value x is ‘‘blinded’’ by the random value r (the

‘‘blinding factor’’); hence, B cannot derive any useful

information from it. B returns the signed value t= xd

mod n to C. Since xdu (rem)du rmd mod n, C can

obtain the true signature s of m by computing s= r� 1t

mod n.
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Fig. 2. Message exchanged in the integrated protocol.
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We now provide the complete details of the anon-

ymous optimistic protocol. As earlier, we assume that

the customer opens an account with a bank, B. The

bank knows the true identity of the customer, C, and

associates an account number ACC with this customer.

We assume that the merchant, M, has an account,

ACM, at the same bank. Note that this assumption

does not affect the properties of the protocol in any

manner. If the merchant’s bank and the customer’s

bank are the same entity then any information that is

available at one bank is available immediately at the

‘‘other bank’’. Co-locating the banks makes collusion

easier. If these two banks are different, then we need

to have additional messages exchanged between the

two to arrive at the same state. On the other hand, if

the banks are different, then providing anonymity is

easier3 than when the banks are the same. Finally, we

assume that we have a group of trusted third parties

working as outlined in Section 7; however, to keep the

discussion simple, we abstract the group of third

parties by a single third party.
3 We can, in theory at least, come up with a way to stop

message flow between the two banks thereby preventing informa-

tion exchange.
For each new transaction with a merchant, the

customer uses a different pseudo identifier, CV. The
real identifier, C, is known only to the customer’s

financial institution and is not divulged by the cus-

tomer in the protocol. The protocol ensures that

except the customer himself, no other player in the

protocol—namely, the bank, the trusted third party, or

the merchant—has enough information, either by

itself or through collusion with each other, to link

the pseudo identifier, CV, used by the customer in the

transaction with the customer’s real identity, C. Thus,

the anonymity of the customer is preserved. If the

customer chooses not to remain anonymous, then the

customer simply uses his true identity.

The customer, as before, selects the product to

purchase, m, from the catalog at one of the trusted

third parties. The protocol starts when the customer

tries to acquire digital coin of some value from the

bank. The following messages describe the anony-

mous optimistic protocol.

Message 1

TPZ C : ½m;KM�:

The customer downloads [m, KM] from the trusted

third party server together with the product identifier,
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PID. Note that the customer does not actually have the

product m, because he does not have the decrypting

key KM
� 1. This [m, KM] will be used later by the

customer to validate the product received from the

merchant.

Message 2

CZB: ½C;ACC;wC;Bpub�; nr; ½CCðnrÞ;Cprv�

The customer C requests the bank for digital coins.

To do this, C sends an unsigned blinded coin to the

bank together with information about his identity and

account number and a nonce wC. The nonce is used to

prevent replay of this message at the bank.

C also sends a signed cryptographic checksum of

the blinded coin. This ensures that the blinded coin

gets to the bank properly. The customer uses his true

identity to sign the checksum of the blinded coin. This

is needed to ensure that the proper accounts get

debited.

There is no need to encrypt the blinded coin with

the bank’s public key. This is because the blinding

factor, r, is available only to C, so C is the only one

that can get n.

Message 3

BZ C: ½nr;Bprv�

The bank receives the blinded coin and debits the

customer’s account for an amount equal to the value

of the coin. It then issues the digital coin by signing

the blinded serial number, nr, and sends the resulting

message to the customer.

Note that at this stage the bank knows about the

identity of the customer and the value of some digital

coin that has been issued to the customer. However,

since the coin serial number is blinded, the bank has

no way of linking a particular digital coin to this

customer, once the blinding factor is removed. The

customer receives the blinded coin and the blinded

checksum of the coin and removes the blinding factor,

r, to get a coin signed by the bank—([n,Bprv]).

Message 4

CVZ M: ½PO;Mpub�; ½CCðPOÞ;CiprvV �; ½½n;Bprv�; S�

The customer initiates the e-commerce transaction

by associating a unique system-wide identifier Ti for

the transaction. For this transaction, the customer

assumes a pseudo identifier, CV and a one time
private-key/public-key pair—{C iprvV ,CipubV }. Also,

the customer chooses a secret key, S, to encrypt

the signed coin. The transaction identifier is a tuple

of the form hPID, CV, Mi. The customer stores a log

record of the form hTi, INITIATEi to its stable storage

and then sends to the merchant, the purchase order,

PO, and the signed digital coin obtained from the

bank.

The purchase order, PO, contains the following

information:
(i) the product identifier, PID;

(ii) the customer’s pseudo identifier, CV;
(iii) the price of the product, PR; and

(iv) a nonce for the customer wCV; this nonce can

contain information about the customer’s pseudo

identity but not the real identity.

The purchase order is encrypted with the mer-

chant’s public key. The customer generates a crypto-

graphic checksum of PO and digitally signs it using

his one time private key CiprvV . The cryptographic

checksum forestalls debate over the details of the

order, or whether the order was received completely

and correctly. The customer’s signature on the PO,

although cannot be authenticated by the merchant at

this time, can be used later to forestall debate over

whether a customer with pseudo identity CVexpressed
an intention to purchase the product. The nonce, wCV,
in the purchase order forestalls a replay of the pur-

chase order with the merchant.

The customer sends the digital coin encrypted with

the secret key, S.

Note that, we assume that all coins have the same

denominations. To purchase a product, a customer

may have to send multiple coins to the merchant. In

such scenarios,Messages 2, 3 and 4 will be repeated a

number of times.

Message 5

MZCV: ½½CCðPOÞ;CiprvV �;Mprv�; ½mr W;KM � KM1
�;

½rW;KM�; ½CCð½rW;KM�Þ;Mprv�;
½CCð½mrW;KM � KM1

�Þ;Mprv�

OR

MZ CV: Finish
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When the merchant receives Message 4 from the

customer, it writes a log record hTi, INITIATEi to its

stable storage; then the merchant checks to see if the

purchase order is to its satisfaction—that is, the

merchant agrees to all its contents. If not, the mer-

chant writes a finish record in its stable storage—hTi,
FINISHi—and terminates the transaction. It informs

the customer of this decision. Otherwise, the merchant

endorses the purchase order by signing [CC(PO),

C iprvV ]. The merchant sends this endorsed purchase

order together with the encrypted product [mrU,

KM�KM1
], its signed cryptographic checksum [CC

([mrU, KM�KM1
]), Mprv], the random number, rU,

encrypted with KM and its cryptographic checksum.

The merchant’s endorsement on the purchase order

forestalls debate over whether the purchase order was

received correctly or not and whether the merchant

agreed to the terms of the current transaction. The

s igned cryptographic checksum [CC([mr U,

KM�KM1
]), Mprv] proves the origin of the encrypted

product [mrU, KM�KM1
] as well as ensures the

integrity of [mrU, KM�KM1
] in transit.

Message 6

CVZM: ½S;Mpub�; ½CCð½m;KM � KM1
�Þ;C 0

iprv�

OR

CVZM: Abort; ½CCð½m;KM � KM1
�Þ;C iprvV �

After receiving Message 5 from the merchant, the

customer checks to see if it is an abort message or the

encrypted product. If it is an abort, the customer

terminates the transaction and writes a log record of

the form hTi, FINISHi. Now if the customer still wants

to purchase the product, the customer initiates a new

transaction with a new purchase order. If the message

from the merchant is not an abort, the customer knows

that the merchant is willing to proceed with the

transaction. The customer then validates the product

as outlined in Section 3.2. If the two compare, the

customer sends the coin decryption key, S to the

merchant, encrypted by the merchant’s public key

and a signed cryptographic checksum of the encrypted

product received. The customer then writes a log

record to its stable storage. The log record is of the

form hTi, PAYMENT-SENTi. Finally the customer

starts a timer, waiting for the product decryption key

to arrive from the merchant. If the timer expires before
the product decryption key arrives from the merchant,

the customer executes the extended protocol. If, on the

other hand, the product is not validated the customer

can request the product from the merchant once more,

or abort the transaction. For the latter the customer

enters hTi, ABORTi in its log and sends an abort

message to the merchant together with a signed

cryptographic checksum of the product received from

the merchant. The signed cryptographic checksum of

the encrypted product forestalls debate over whether

the encrypted product received by the customer is the

same as the encrypted product sent by the merchant.

Message 7

MZB: ½f½½n;Bprv�;Mprv�;Mg;Bpub�

OR

MZ CV: Abort

After the merchant receives the private key from

the customer to open the digital coin, the merchant

verifies the signature of the bank on the coin. Depend-

ing on the price of the product, the merchant will

receive multiple such messages. If the merchant is not

satisfied for any reason at this stage, it sends an abort

message to the customer and writes an abort record,

hTi, ABORTi, in its log. Note by keeping an abort

record in its log, the merchant indicates that some-

thing went wrong with the transaction and that it

expects to hear either from the customer or from the

third party. The customer, on receiving the abort

message, can choose to abort the protocol and return

the coin to the bank or can re-send the key. If the

customer feels that the merchant is playing unfairly, it

can initiate the extended protocol to resolve disputes.

If, on the other hand, the merchant is satisfied, it

digitally signs the coin and sends the coin to the bank

together with the merchant’s identity. The message is

encrypted with the bank’s public key. At this time the

merchant writes a log record, hTi, PAYMENT-

EXPECTINGi. It then starts a timer waiting for a

response to come back. If the timer expires before a

response, the merchant resends the coin.

If instead of the private key, the merchant receives

an abort message from the customer, it terminates the

transaction after writing the log record hTi, FINISHi.
Writing a finish record indicates that there will not be

a dispute resolution phase for this transaction.
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Since all the coins are of the same denominations,

the merchant may need to send Message 7 a number

of times depending on the value of the product.

Message 8

BZ M: yes

OR

BZ M: no

The bankmaintains a list of coins spent. Each record

in the table is of the form hCOIN-SERIAL-NO, PAID-
TOi. When the bank receives the coin from the mer-

chant, it checks to see if the coin has been spent before.

If so the bank replies by a ‘‘no’’ message. Otherwise it

credits the merchants account for an amount equal to

the value of the coin and replies ‘‘yes’’.

Message 9

MZ CV: ½K�1
M2

;C ipubV �; ½rW�1;C ipubV �

OR

MZ CV: Abort

Once the merchant receives a ‘‘yes’’ message from

the bank, the merchant sends the product decryption

key, KM2

� 1, to the customer encrypted with the cus-

tomer’s public key and also the multiplicative inverse

of rU modulo N2, namely, r� 1
U. Then it writes a log

record hTi, FINISHi and forgets about the transaction.

When the customer receives the product decryption key

and obtains the product m, the customer writes a log

record hTi, FINISHi, and the protocol terminates.

If on the other hand the merchant receives a ‘‘no’’

message from the bank, it writes an abort log record hTi,
ABORTi in its log and sends an abort message to the

customer.

If the customer receives the product decryption key

KM2

� 1 and the multiplicative inverse of rU modulo N2,

it writes a finish record in its log hTi, FINISHi and

terminates the transaction. Else if the customer feels

that the merchant has played unfairly, it may choose to

execute the extended protocol with the third party for

dispute resolution.

The extended protocol that is used for dispute

resolution is slightly modified from the one outlined

in Section 5. The extended protocol is initiated by the
customer if the customer’s timer expires afterMessage

9 or the customer receives an abort message from the

merchant in reply toMessage 9. The customer provides

the same set of evidence to the trusted third party as in

the basic protocol in order to initiate a dispute resolu-

tion. The third party gets in touch with the bank to

validate the coins. If the coins have not been spent, the

TP knows that the customer is behaving fairly. Other-

wise, the TP does not know who is behaving unfairly.

In such circumstances, it requests more information

from the bank about who has deposited the coin,

requests evidence from the party who has deposited

the coin, and takes the appropriate action.

There can be a scenario in which the customer does

not care to initiate a dispute resolution phase (because,

for example, it realized that it had knowingly or

unknowingly played unfairly). However, the merchant

has not yet terminated the transaction as it expects a

round of dispute resolution. Under this scenario, the

merchant will contact the trusted third party after a

suitable period of time and inquire about a ‘‘certain

transaction Ti’’ with a ‘‘certain customer’’ having the

pseudo-id CV. If the third party is not aware of any such
transaction, the merchant will terminate the transaction.
9. Analysis of the anonymous, optimistic protocol

In this section, we show that the anonymous,

optimistic protocol satisfies the properties of money-

atomicity, fair-exchange, validated-receipt and cus-

tomer-anonymity.

Theorem 8. The anonymous, optimistic protocol

satisfies the money atomicity property.

Proof of theorem 8. The proof is similar to Eq. (4).

We assume the contrary. Money can potentially be

created if any player attempts to double-spend the

digital. The customer can try to double spend the coin

by using it for another purchase, either at the same

merchant or at a different merchant. However, this

will soon be caught because the financial institution

keeps the serial number of all coins that has been

presented to it for crediting and will not validate a

coin (step 7/8 of protocol) if it is presented for

validation more than once. The merchant may want to

double spend the coin by presenting it more than once
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Table 2

Information possessed by each party

Information C TP B M

C Yes No Yes No

B Yes Yes Yes Yes

M Yes Yes Yes Yes

TP Yes Yes Yes Yes

CV Yes Maybe No Yes

Cpub Yes No Yes No

Cprv Yes No No No

C ipubV Yes Maybe No Yes

C iprvV Yes No No No

KM No Yes No Yes

KM
� 1 No Yes No Yes

KM1
No No No Yes

KM1

� 1 Yes No No Yes

PO Yes Maybe No Yes

C’s account is ACC Yes No Yes No

CV’s account is ACC Yes No No No

n Yes Maybe Yes Yes

r Yes Maybe No No

rU Yes Maybe Maybe Yes

[m, KM�KM1] Yes Maybe Maybe Yes

C and CVrefer to the same

entity

Yes No No No

C carries on transaction Ti Yes No No No

CVcarries on transaction Ti Yes Maybe No Yes

Cpub and C ipubV belongs to

the same entity

Yes No No No
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to its financial institution. Here again the financial

institution will not validate the coin and prevent

double spending.

Money can be destroyed in one of three different

ways:

1. The customer destroys the digital coins after ob-

taining them from the financial institution. Since the

customer’s account is debited before the coins are

issued, this causes destruction of money. (Note that

for Theorem 4, the account was not debited when

the token was issued, so this case did not arise.)

2. The merchant destroys the digital coins before

depositing them to the financial institution.

3. The merchant looses the digital coins before using

them.

Cases (1) and (2) reflect irrational behavior on the part

of the customer or the merchant hence are disre-

garded. Case (3) is taken care of in the same manner

as in Theorem 4.

Thus, money atomicity is ensured in the

protocol. 5

Theorem 9. The anonymous, optimistic protocol

ensures fair-exchange.

Proof of Theorem 9. The proof is the same as in

Theorem 5. 5

Theorem 10. The anonymous, optimistic protocol

satisfies the validated-receipt property.

Proof of Theorem 10. The proof is the same as in

Eq. (6). 5

9.1. Analysis of anonymity

The main objective of the anonymous, optimistic

protocol is to prevent disclosure of the true identity of

the customer to all possible adversaries while ensuring

money atomicity, fair-exchange and validated-receipt.

We claim that

Theorem 11. The protocol provides customer-

anonymity.

Proof of Theorem 11. Recall (from Definition 21)

that to provide customer-anonymity, the protocol must
ensure that (i) no single party (other than the

customer) has enough information to link the

pseudo-identifier used by the customer to the

customer’s real identity and (ii) it will not be possible

for all the parties (besides the customer) to collude

and get this information. The only way to break the

customer’s anonymity is to get either the information

‘‘CV’s account is ACC’’ or the information ‘‘C carries

on transaction Ti’’, or the information ‘‘C and CVrefer
to the same entity’’.

First we identify the information that each of the

protocol participants—the customer (C), the trusted

third party (TP), the bank (B) and the merchant

(M)—individually knows at the end of the protocol

execution. We only consider the information that

may potentially be used to link C to CV. This

information is tabulated in Table 2. The entry Maybe

in a cell is interpreted as Yes if the extended

protocol is executed, otherwise it is No. The table is

interpreted as follows: Consider first row 1 in the
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table. No under columns TP and M indicate that the

true identity of the customer, that is C, is not known

to TP or M. Yes under columns C and B indicate

that the true identity of C is known to C (of course)

and B. Consider next row 5. A Maybe under column

TP indicates that in general TP does not know the

identity of CV. Only if the dispute resolution part of

the protocol is executed will TP be aware of certain

CV. 5

From Table 2, we note that the only participant

who has the information ‘‘C and CVrefer to the same

entity’’ is C itself. So unless C volunteers this infor-

mation to others, nobody has access to that informa-

tion. We find that at the end of the protocol, no single

participant has enough information to link the pseudo-

identifier CVto the real customer C. Let us see if, by

collusion between two or more entities (other than the

customer), they can acquire enough information to

link CVwith C.

The necessary condition for two or more parties to

collude are (a) the parties must know each other’s

identity and (b) the parties must have some common

piece of information pertaining to the transaction that

the customer carries on with the merchant; this is the

first step before the colluding parties can continue

with the process.

We initially assumed that the third party will not

misbehave. So under that assumption, TP will not be

colluding with any other player. However, for the sake

of analysis, let us assume that TP also colludes. We

first determine if two given parties are in a position to

collude.

TP and M TP knows about M’s identity and vice

versa. This is because M has to register

at TP. Also they have a common piece of

information [m, KM�KM1
] pertaining to

the transaction that can enable collusion.

TP is the only entity to profit by this

collusion. It gains knowledge about the

following pieces of information—CV,
C ipubV , KM1, KM1

� 1, PO, n, rU and CV
carries on transaction Ti. M does not

learn anything new about the true

identity of C.

TP and B TP and B know each other’s identity.

However, they do not have any common
piece of information about the trans-

action. Thus, they are not in a position to

collude.

M and B M and B know each other’s identity and

they have the following piece of

information about the transaction—n,

the serial number for the coin. Both B

and M benefit from this collusion. B

gets to have the following additional

information—CV, KM1
, KM1

� 1, rU, and ‘‘CV
carries on transaction Ti’’. M, on the

other hand, acquires the following addi-

tional knowledge—C, Cpub, ACC, and

‘‘C’s account is ACC’’. However, M

cannot link CV to C.

Thus, it is clear that via two party collusion, no entity

acquires sufficient information to link C to CV.
Let us now consider the only possible three party

collusion.

TP, B and M TP, B and M have each other’s identity

and via two party collusion they have

a number of common pieces of infor

mation about the transaction—[m,

KM�KM1
] and n to name two. By such

a collusion, TP, B and M all come to

share the following pieces informa-

tion—C, Cpub, C ipubV , Mprv, Bprv, KM,

KM
� 1,KM1

,KM1

� 1, PO, ACC, ACM, n, rU,

[m, KM�KM1
], ‘‘CV carries on trans-

action Ti’’ and ‘‘C’s account is ACC’’.

It is clear that even by three party

collusion, no entity is able to acquire

either the information ‘‘C carries on

transaction Ti’’ or the information ‘‘CV’s
account is ACC’’. Hence, the protocol

provides customer-anonymity.
10. Conclusion and future work

Fair exchange is an important property that needs

to be addressed by all electronic commerce protocols.

Majority of protocols proposed in the literature rely on

collecting evidence during protocol execution that can

be used later in a court of law to settle disputes.

Unfortunately, such after-the-fact dispute resolution
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may often be unacceptable, for example, in situations

where it is not possible to bring an offending party to

a suitable court of law. Keeping this in mind, we

proposed an e-commerce protocol that ensures strong

fairness within the scope of the protocol itself. Our

protocol falls into the category that uses a trusted third

party for assuring fair-exchange.

Most of the times, e-commerce transactions pro-

ceed without any party misbehaving. Keeping this in

mind, we take an optimistic approach in the proto-

col—do not contact the trusted third party unless

necessary. This is in contrast to some other similar

protocols that actively use the third party to ensure

fair exchange. Our approach reduces the bottleneck

at the trusted third party and also allows us to

achieve our objectives using an off-line trusted third

party that need not be active for the entire duration

of the transaction. We further reduce the bottleneck

at the third party by distributing the services of the

third party over several servers. Distributing the third

party provides an additional advantage. The protocol

is now more resilient towards denial of service

attacks and hacking activities aimed at the trusted

third party.

We extend the protocol to allow anonymous trans-

actions by the customer. This is achieved by allowing

the customer to use digital money similar to the one in

the Digicash protocol. We ensure that a particular

transaction can, in no way, be linked to a particular

customer, even though the customer’s financial insti-

tution that issues the digital money knows the custom-

er’s real identity. Such functionality is advantageous

for the customer’s privacy in many ways.

In summary, our protocol has the following fea-

tures. First, it provides strong fairness under all

circumstances. The customer does not get the prod-

uct unless he pays for it and the merchant does not

get paid unless he delivers the product. Note that

fairness is always ensured and is not compromised

even if any party misbehaves or prematurely aborts.

Second, the protocol does not require any manual

dispute resolution in case any party behaves unfairly.

Third, the protocol does use a third party; however,

the third party does not become involved unless a

problem occurs. Fourth, the protocol allows the

customer to be confident that he is paying for the

correct product before actually paying for it. Fifth,

the protocol can be generalized and used for the fair
exchange of any two digital items, not necessarily

electronic goods and electronic payment. Sixth, the

protocol is not susceptible to denial-of-service

attacks aimed at the trusted third party. Last but

not the least, the protocol allows the customer to

remain anonymous in the transaction.

To our knowledge, no other e-commerce protocol

offers all these features. However, the protocol at this

time is in its early stages of development and a lot of

work remains to be done. First and foremost, we need

to formally analyze the protocol. Formal analysis will

help us answer two questions: (i) Is the protocol really

secure and safe to use? If so, under what assumptions?

If not, why not and can it be improved? (ii) Does the

protocol behave correctly when it is operating in

conjunction with other protocols and under different

operating condition? We plan to use formal software

specification and verification tools like FDR [12] for

this purpose.

Second, the use of trusted third parties can some-

times be regarded as a limitation of the protocol.

Identifying a third party that can be completely trusted

is no trivial proposition. We are currently investigat-

ing ways by which we can use semi-trusted third

parties. Semi-trusted third parties can misbehave but

they are assumed not to collude actively with any

player in the protocol to the detriment of the other

players.

Third, the performance of this protocol has to be

formally evaluated. In particular, we plan to study the

load at the trusted third party and how the frequency

of failure of the third party affects the performance.

Such a study will help us identify ways to optimize

the protocol.

Last but not the least, we plan to implement the

protocol. We plan to use COTS components for this

implementation. Implementation will give us a dif-

ferent perspective on the protocol and may require

addressing new issues.
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